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Abr#ract: Cycle-[3a-(pbcoylalaninylamino)-5g-cbolanate]s 2 was synthesized from litbocbolic 
acid and (S)-pbenylalanioe, Tbe synthesis requires three transformations: i) stereoselective 
convcrsioo of the 3a-bydroxy group to the fa-amino group; ii) preparation of the linear 
steroidal peptide; iii) cyclodimerisatioo. NMR measurements and MM3 calculations support a 
conformation of 2 with a lipophilic cavity. 

The rigid concave shape of cholic acids makes them ideal building blocks for the construction of 

synthetic host molecules.1 Advanced systems elaborated so far are cholaphanes of the type l2 

and cyclocholates developed by Bonar-Law. 3 Although the phenyl spacer in 1 gives the cavity an 

extended shape, the functionalization of the phenyl groups is limited and the size of the cavity is 

fixed. We report here the synthesis and characterization of the fist chola-cyclopeptide 2 where 

two molecules of the pseudoamino acid 3 (3a-amino-lithocholic acid) form with two phenylala- 

nines a cyclopeptide with a lipophilic steroid cavity. 

To achieve the synthesis of 3, the 3a-OH 

group of lithocholic acid has to be replaced 

by an amino group with retention of the 

configuration. The triphenylphosphine - 

diethylazodicarboxylate - reagent4 was the 

key to this transformation. It proved to be 

suitable for a twofold inversion of the 

configuration at the C3 atom. Therefore, the 

lithocholic acid was first converted into the 

corresponding methylester 4. 
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Methyl-3@-formyloxy-5@-cholanate 5a was then prepared by nucleophilic substitution under 

inversion of the 3a-OH group activated with the PPhglDEAD-system. The formyl derivative 5a 

was subsequently cleaved to the 3$-hydroxyester 5b with 10% sodium methoxide in 

methanoi.5*6 The configurational homogeneity is proved by the different chemical shifts of the 

C3-protons in equatorial and axial position (S(H3eq in Sb) = 4.10 ppm; 6 (H3ax in 4) = 3.64 

ppm) and by their different coupling constants, which lead to an narrow multiplet for the 3& 

position and a wide triplet of triplets for the 3a-position. 7 The return to the initial configuration 

was achieved with a second Mitsunobu substitution using azide as nucleophilic amine 

equivalent.gt9 Because of its stability the zinc azide-bis-pyridine complex was used instead of 

the uncomfortable hydrazoic acid. The azide group in 6 was reduced by triphenylphospbinel~ to 

the corresponding iminophosphorane which hydrolyzes to the amino derivative 7 in an overall 

yield of 49% based on 4.11 
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N-BOC-protected amino acids are easily attached to 7 using propane phosphonic acid anhy- 

dride. 12-13 The phenylalanine derivative 8 is converted to the pentafluorophenolester which 

cyclizes to the cholapeptide 2 after removal of the BOC group.14*15 The identity of the 

macrocycle 2 follows from the DC&mass spectrum. 16 The f H-NMR spectrum shown in figure 1 

reflects the purity and C2 symmetry of 2. 
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Figure 1 : Parts of the 400 MHz lH-NMR spectrum of 2 in CDC13. 

The conformation of 2 is manifested in NOE cross peaks found in a ROESY spectrum in 

CDC13. The strong NOE connectivitics, drawn schematically in figure 2. confirm a trans- 

orientation of both types of peptide bonds. The alternating strong and weak connectivities 

suggest further that the peptide chain has an extended conformation. First molecular modelling 

studies on 2 using Still’s systematic bond rotation approach17 and the MM3 force field18 result 

in the conformation of lowest energy shown in figure 3. The MM3 calculation of the isolated 

molecule optimizes all intramolecular attractions so the peptide part is folded to a y-turn.19 The 

cavity of the conformation is large enough to encapsulate small organic substrates. 

Figure 2 : Strong (solid) and weak Figure 3 : Conformation of lowest 

(dotted) NOE connectivities in 2. energy of 2 (MM3). 

The macrocycle 2 is the fast member of a class of host compounds, where the rigid surface of a 

steroid is combined with amino acids having variable chemical functions and conformations. 
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